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Stability Derivatives of a Flapped Plate in
Unsteady Ground Effect

A. O. Nuhait* and M. F. Zedant
King Saud University, Riyadh 11421, Saudi Arabia

The stability derivatives of a flapped plate moving in ground proximity are evaluated using an unsteady
ground effect model. The model, which has been developed previously, was extended to account for the flap.
The results show that ground proximity has a substantial effect on the derivatives of the aerodynamic coefficients.
The derivatives obtained by the present unsteady model disagree with those obtained by the customary steady
ground effect model, especially very close to the ground. The effect of the flight-path angle (in addition to the
pitch angle or angle of attack) on aerodynamic coefficients is found to be substantial and, therefore, their
derivatives with respect to it are very important. Because of its own nature, the steady approach fails to account
for the flight-path angle and, therefore, it cannot provide the derivatives with respect to this angle near ground.

Nomenclature

normal component of velocity induced at
control point i by a unit circulation at node j

C = lift coefficient of flapped plate, F,/(3pV 2c)

C. = derivative of C, with respect to «; derivatives
with respect to y, 6, and h are C,_, C,,, and
C,,, respectively

Cy = flap lift coefficient, F,/(3pV ic,)

C, = moment coefficient of flapped plate around
the 0.37¢ point; C, -moment/(3pV 2c?)

C, = moment coefficient of flapped plate around
leading edge

Cu = derivatives of C,, with respect to «;
derivatives with respect to vy, 6, and 4 are
named similarly

C,r = flap moment coefficient around the junction,
M, /(3pV gc})

c = chord of flapped plate

¢ = flap chord

h = height of quarterchord point of the flapped
plate above ground

N = number of nodes between vortex elements

NT = number of time steps

n; = unit normal vector at control point i

QO; = normal velocity induced at control point i by
a unit circulation at the trailing edge

Vi = linear velocity vector of the flapped plate

Vix» Vay = X and Y components of V,

« = angle of attack

I. = circulation of starting (trailing-edge) vortex

T; = circulation of vortex core at node j

v = flight-path angle

A = change in parameter

1) = flap angle

0 = pitch angle

Introduction

HE longitudinal stability of an aircraft depends on the
changes in its aerodynamic coefficients, relative to the
changes in parameters describing its motion, such as the angle
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of attack. The ratios of these changes are described by the
derivatives that are known as the stability derivatives.! These
derivatives are usually determined from the aerodynamic
characteristics of the aircraft in a steady uniform flow, free
of ground effects. This approach is satisfactory as long as the
aircraft is far from ground. However, during landing and take-
off, and for vehicles that intentionally fly near ground, such
as “‘wing in ground,” ground effects on the aerodynamic coef-
ficients cannot be ignored. Many studies have shown that
these coefficients can increase sharply near ground and, there-
fore, their derivatives are expected to be different from those
obtained far from ground.

The effect of ground on the stability of an aircraft was
recognized by Stanfenbiel and Schlichting.” In fact, they cor-
rected the condition of static height stability (introduced ear-
lier by others) by including the derivatives: C,,, C,,,, and
Chus in addition to the already existing C, ,. However, these
derivatives were determined from ‘‘steady ground effect”
analysis. In this analysis, steady flow is solved around the
airfoil while at various heights above the ground to simulate
the flow as the airfoil approaches ground. This approach has
been shown by the authors®* and others’ to be flawed because
of the inherent unsteady nature of the flow as the airfoil
approaches ground. These unsteady effects were further shown
to produce changes in the aerodynamic coefficients, in many
instances, substantially different from those obtained by the
steady approach. Nuhait® gives an extensive literature review
on ground effect in general. Kumar’ considered some aspects
of the stability problem associated with wings in ground effect.
He treated the flow as quasisteady and computed the stability
derivatives at fixed height above the ground.

The objective of this article is to calculate the stability de-
rivatives of a flapped-plate in ground effect using the unsteady
approach. Derivatives with respect to height above ground,
flap angle, and flight path, and pitch angles are determined.
It is interesting to note that in the commonly used steady
approach, the effect of the flight path cannot be accounted
for and, therefore, the derivatives with respect to its angle
are not calculated. To calculate these important derivatives,
one must use unsteady ground effect analysis. This appears
to be lacking in the literature. It should be noted that the
results presented in this article are not intended for direct
application. Rather, they demonstrate the importance of in-
cluding unsteady effects in evaluating the derivatives.

A flapped plate rather than a single plate was chosen for
the present work because of the common use of flaps near
ground to avoid the loss of lift due to speed limitations. We
feel flaps should be included in any ground effect model;
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something that we also find lacking in published unsteady
ground effect models. The unsteady model described earlier
by the authors? is used in the present calculations after being
extended to account for the flap. In doing so we investigated
the possibility of allowing vorticity to be shed at the junction
between the plate and the flap (hinge), in addition to the
usual shedding at the trailing edge.

Unsteady Ground Effect Model

In this article, a plain flap is hinged at the trailing edge of
a flat plate. As a result, the model used here is a simple
extension of the thin plate model described earlier in detail
by the authors.? The main features of the model are sum-
marized below.

The flow is treated as two dimensional, incompressible, and
inviscid. The method of images is used to represent the ground
effect. The images of the plate, flap, and their wakes are
placed below the ground plane, thereby making the ground
a streamline as shown in Fig. 1. In the figure, two coordinate
systems and some definitions are given. The flapped plate and
its wake and their images are simulated by vortex sheets. At
the start of motion, no wake exists yet. The vortex sheets
representing the flapped plate and its image are discretized
into a number of elements (each has N nodes and N — 1
elements). A uniform vorticity distribution over each element
is approximated by an equivalent point vortex at the quar-
terchord point of the element. The tangency condition is sat-
isfied at one control point on each element located at its
middle. The unsteady flow is simulated by placing a vortex
core with unknown circulation I', at the trailing edge of the
flap.® The position of the origin of the moving frame (point
A), which is attached to the plate, 6, and 8, must be given
as functions of time in order to obtain the solution. vy is pro-
portional to the vertical speed of the plate V,, (with respect
to the ground-fixed frame in Fig. 1). They are interrelated
through the relation:

v =tan (= V,y/Vax) ()

In this article the flapped plate moves along a straight line

horizon ——«

4
\flight
path
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(i.e., v = const). The no-penetration boundary condition at
a control point / is given by

N-1
2 Airl‘/ QI . =V,:n (2)
i=1

and the principle of conservation of circulation with respect
to time (Kelvin’s theorem) is expressed as

N=1
>I-r.=0 3)
J=1

The solution of a system of equations consisting of Eq. (2)
applied at (N — 1) control points in addition to Eq. (3), at
the end of the first time step, yields the circulations bound to
the flapped plate and the circulation of the core at the flap
trailing edge. At the beginning of the second time step this
vortex core (starting vortex) is shed and convected down-
stream at the local fluid particle velocity in order to satisfy
the unsteady Kutta condition.® The wake is generated as a
result of shedding and convecting the starting vortex. Once
the wake is generated, the effects of the wake and its image
must be included in Eqs. (2) and (3). Thus

N-1
E Ai/'r/' - QI'FF = (VA - unkx:).ni (4)
i=1

NT-—1

N1
2 r/' - r(' = I\El qukc.k (5)
i=1 ¢ =

where V. is the velocity induced by the vortex cores in the
wake and their images at control point {, NT is the number
of time steps the solution has advanced, and I',,,., is the
circulation of a vortex core k in the wake. At the end of the
second time step, the circulations are computed by solving
the system of equations [Eqs. (4) and (5)]. At the beginning
of the third time step, the new vortex core at the flap trailing
edge is shed and convected to its new position as required by
the unsteady Kutta condition. Simultaneously, the starting
vortex is convected to a new position in order to make the
pressure continuous across the wake. The wake grows as a

-—
—

Ground plane

Image

Fig. 1 Definition sketch.
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result of shedding and convecting vortices. Thus, the distri-
bution of vorticity in, and shape of, the wake are computed
as part of the solution. The solution procedure can be re-
peated to any desired number of time steps.

The aerodynamic force and moment are computed by in-
tegrating the pressure-jump distribution over the flapped plate.
The pressure jump across each element is found at the control
point of that element by using the unsteady Bernoulli’s equa-
tion as described in Ref. 3.

In the case when there is a gap between the plate and the
flap, the airfoil is treated as two flat plates with vorticity shed
from both trailing edges. Equation (4) is then modified to
include the effect of the vortex core at the plate trailing edge
and the plate wake. Equation (5) is replaced with two equa-
tions resulting from the requirement that the circulations around
the plate and the flap and their wakes remain constant.

Results and Discussions

First we present some results on extending the model to
account for the flap, then we present the results on the stability
derivatives obtained by this model and compare them
with those obtained by the steady ground effect model. In
this article the chord of the flap is taken to be 20% of the to-
tal c.

Investigation of the Model

The present model was verified in earlier studies for fiat?
and cambered* plates, each moving near ground. We found
no results available for a flapped plate in unsteady ground
effect to compare with. Because of earlier extensive verifi-
cations, the model is expected to work well for a flapped
plate, provided that the flap is accounted for properly. To
test that, we set the plate to move impulsively from rest very
far from ground, and allow the unsteady solution to progress
in time until the aerodynamic coefficients reach asymptotic
(steady) values while the plate is still outside ground effect.
These values are then compared with the results obtained
from the closed-form expressions of the thin-airfoil theory.®
Figure 2 shows such a comparison for a plate with 6 = 10
deg at three angles of attack « = 0, 5, and 10 deg. These
values of « and o0 are within the range of validity of the thin
airfoil theory. The agreement is excellent for both lift and

2.0
A Present (Unsteady) Model with y=0°
—— Thin—Airfoil Theory
1.5 F
Ce
1.0 No Ground Effect
6=10"
0.5 8 | | It 1 1 J
0 2 4 6 8 10 12
« (degrees)
0.0
= 4
Cem \
-0.5F
—-1.0 L I | 1 | |

0 2 4 6 8 10 12
« (degrees)

Fig. 2 Steady verification of present model.

moment coefficients. Shedding of vorticity was allowed only
at the trailing edge of the flap in obtaining these results.

For large values of 8, there is a possibility of vorticity shed-
ding at the junction between the flap and the main plate (even
if there is no grap), in addition to the usual shedding at the
trailing edge. This possibility is expected to increase if there
is a gap between the plate and the flap. This was investigated
by allowing shedding of vorticity (a wake) at the junction and
comparing the results with those obtained without it. Figure
3 shows such a comparison for 8 = 10, 20, and 30 deg at
a = 5 deg, without considering ground effects. Except at the
start of motion (near zero time), the effects of including the
wake at the junction on C, and C,, are negligible for 6 = 10
deg, and are very small for 8 = 20 and 30 deg. Figure 4 shows
a similar comparison while including ground effects for a plate
with 8 = 20 deg, moving at « = 5 deg and y = 20 deg. The
figure is truncated to show C,and C,,, only near ground. Again,
the effects of including a wake at the junction are negligibly
small, especially very close to the ground. Based on these
results, and to conserve computer time, we decided not to
include the wake at the junction in the remainder of the
calculations.

Stability Derivatives

These derivatives are calculated from the results of a num-
ber of runs in which the flapped plate starts motion impul-
sively far enough from ground such that the flow around it
reaches steady conditions while it is still outside ground effect.
Thus, as the flapped plate moves towards the ground, any
changes in the flow (unsteadiness) are brought in by the effect
of ground. First results are obtained for a baseline case with
8, = 20 deg, y, = 20 deg, and 6, = —15 deg (&, = 5 deg).
To obtain the derivatives with respect to 8, e.g., another run
is made with § = §, + A8, while keeping § = 6, and y =
v,. For a small Ad, the derivative of the lift coefficient is
approximated by

8_C, _ Ci(h, 8y, ¥y, 8o + A8) — Ci(h, 6y, Yo, 00)
e Ad

The derivatives of other aerodynamic coefficients with respect
to &aC,,/88, 3C,/a8, 6C,,;/d8) are obtained in a similar fash-

No Ground Effect

2.5
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0.5 | 1 1 { |
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time (dimensionless)
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—-0.40 _
Cm _5:20"

-0.80 £ - s=30
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Fig. 3 Effect of wake at the junction of a flapped plate out of ground
effect on its aerodynamic coefficients.
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Fig. 4 Effect of wake at the junction of a flapped plate in ground
effect on its aerodynamic coefficients.
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Fig. 5 Derivatives of aerodynamic coefficients with respect to height
above ground for flapped plate in ground effect; ¥ = 20 deg and
0 = —15 deg (@ = 5 deg) for unsteady analysis, and 6 = « = 5 deg
for the steady analysis.

ion. The same procedure is used to obtain derivatives with
respect to 6 and y. Values of A8, A, and Ay used are equal
to 0.1 deg. Because of the dependence of the aerodynamic
coefficients on the height above ground & as demonstrated
by Fig. 4, all the above derivatives are expected to be functions
of h. The derivatives of the aerodynamic coefficients with
respect to A itself are also important in stability analysis near
ground. These are obtained by numerical differentiation of
the coefficients (obtained in the base run) with respect to h.
The derivative at a point is obtained by fitting a parabola
through it and the two neighboring points.

Figure 5 shows the derivatives of C,, C,,, C;, and C,,, with
respect to k. It is obvious that the derivatives of all coefficients
are essentially zeros for & > 1.5, indicating insignificant ground
effect there. As & drops the derivatives, especially those of
C,and C,,vary considerably. Negative derivatives with respect
to & indicate an increase in aerodynamic coefficients towards

the ground and vice versa. These results are consistent with
those in Fig. 4, which show an increase in C, and a decrease
in C,, as the ground is approached. Note that the moment is
taken around the leading edge in Figs. 3 and 4 and around a
point at 37% of the chord in the remaining figures. This last
location was selected such that zero pitching moment is ob-
tained in steady flight out of ground effect (for « = 5 deg
and 8 = 20 deg). The derivatives obtained via steady ground
effect approach are shown on the figure by symbols. These
derivatives agree with those obtained by the unsteady ap-
proach for 4 > 1.5, but disagree progressively towards ground.
In fact, we observe very substantial differences (order of mag-
nitude) for & =< 0.5. The slight oscillations in (8C,/0h) observed
in Fig. 5 may be attributed to an insufficient number of digits
used in writing C, values from which the derivative is calcu-
lated.

Figure 6 shows the derivatives of C, with respect to 8, v,
and 6. The value of each of these derivatives is roughly con-
stant for 4 > 2, where ground effects are insignificant; (9C,/
dy) and (3C,/90) are approximately equal at a value of around
6 compared to (6C,/36) = 3.2. As ground is approached, both
(8C,/86) and (3C,/88) drop in a mild fashion, while (3C,/97y)
initially drops slightly then increases sharply. The agreement
between (9C,/dy) and (3C,/36) outside ground effect and their
sharp disagreement close to ground reveal something very
important and point out the strong need for unsteady ground
effect analysis as explained below.

Since @ = # + v, it follows that

Aa = Ay for 6 = 6,

Il

Aa = A9 for vy = v,

For a flapped plate with a fixed 6, this leads to

i, _ <£) and 0G0 _ (£)
dy da -0, a6 Bl =y

Thus, the results far from ground (Fig. 6) indicate that

G\ _ (oG
da / , - \da 5
which means that the pitch and flight-path angles do not have

any effect on the coefficients and, therefore, on the derivatives
there, provided that « is unchanged. In other words whatever
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Fig. 6 Derivatives of the lift coefficient of a flapped plate in ground
effect with respect to y, 0, and 6; vy = 20 deg and = — 15 deg («

= 5§ deg) for the unsteady analysis, and § = « = 5 deg for the steady
analysis.
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effect @ and vy have is through the effect of a change in «a.
This is a known fact outside ground effect, and our results
just confirm it. However, close to the ground the results (Fig.
6) indicate that

aC, __ 3G, <ac,> (aC,)

—>>— or |— | >>|—

ay a6 da / do )
which means that both y and 6, or y and a, are important in
determining the derivatives. The effect of vy is ignored alto-
gether in the steady ground effect approach, which makes its
results not only inaccurate, but also erroneous near ground.
The derivatives obtained by the steady approach shown on
the figure just confirm this conclusion; they agree with both
(9C,/96) and (aC,/9y) outside ground effects and are consid-

erably lower near ground. Thus, the change in C, should be
expressed, in general, as

aC aC oC, oC,
dC, = —“dh + —ds + —Ldo + —dy
oh 36 L] dy

in which the effect of « is accounted for by 6 and .
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L Crs e 0
_ | il 1 I ]
o 1 2 3 3 5
h
Fig. 7 Derivatives of the moment coefficient of a flapped plate in
ground effect with respect to y, 0, and 6; y = 20 deg and 6 = —15

deg (o = 5 deg) for the unsteady analysis, and § = a = 5 deg for
the steady analysis.
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Fig. 8 Derivatives of the flap lift coefficient of a plate in ground effect
with respect to y, 8, and 6; y = 20 deg and @ = —15deg (@« = 5
deg) for the unsteady analysis, and 8 = « = 5 deg for the steady
analysis.

Figure 7 shows the derivatives of the moment coefficient.
We observe again that

9C.,

m

aC,,
= —= == const
a0 dy

far from ground. As ground is approached, both derivatives
drop slowly initially, then at a sharper rate near ground with
|8C,,/ay| >> |aC,,/06] very close to the ground. Again, the
same reasoning put forward earlier applies to this behavior,
enforcing the fact that far from ground changes in «, brought
about by changing either y or 8, have the same effect. Whereas
near ground, both y and 6 are important, and derivatives with
respect to each of them need to be considered. (4C,,/36) ob-
tained by the steady analysis agrees with both (3C,,/96) and

0.5 r
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) ]
S-oskChy
6 ! T HebeoosnoEsnssEE0E00
2
=10
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Craty
Cone —— o
—-1.5+ Crts R o
_ I | 1 ! |
205 1 2 3 3 5

Fig. 9 Derivatives of the flap moment coefficient of a plate in ground
effect with respect to y, 0, and 8; ¥ = 20 deg and 8 = —15 deg («
= 5 deg) for the unsteady analysis, and # = « = 5 deg for the steady
analysis.
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Fig. 10  Effect of flight-path angle on the lift and moment derivatives;
6 = 20 deg and a = 5 deg.
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(9C,,/9y) obtained unsteadily far from ground, and disagrees
with them close to ground. As for |4C,,/38(, it stays roughly
constant until very close to the ground where it drops slightly.

The derivatives of the flap lift coefficient are shown in Fig.
8. The same general observations made when discussing Fig.
6 still apply here, with the exception that (4C, /dy) and oC,,/
d6) are smaller than (9C,/0y) and (3C,/36), respectively. Figure
9 shows the corresponding results for the flap moment coef-
ficient. The magnitudes of all the derivatives are negative.
This is due to choosing to take the flap moment around the
hinge. The behavior of the derivatives with 4 is generally
similar to that observed in Fig. 7. In both Figs. 8 and 9 the
derivatives obtained steadily disagree sharply with those com-
puted unsteadily for 2 < 1.0. The importance of the effect of
v is further demonstrated by studying its effect on the deriv-
atives for a given a. Figure 10 shows that the effect of y on
(9C,/ay) and (3C,,/d7y) is quite substantial, indicating that the
second derivatives with respect to -y are also important. The
corresponding results for (C,/dy) and (3C,,/dy) behave sim-
ilarly and, therefore, are not presented.

m

Summary and Concluding Remarks

The stability derivatives of a flapped plate moving in ground
proximity were evaluated using an unsteady ground effect
model developed previously after extending it to account for
the flap. Vorticity is shed as usual from the trailing edge (of
the flap) as required by the unsteady Kutta condition when
the airfoil approaches the ground. When vorticity is allowed
to be shed from the junction point between the plate and the
flap, the results were essentially the same. Because of this,
and to conserve computer time, the final model used to gen-
erate the derivatives did not include shedding (wake) at the
junction. Derivatives with respect to pitch angle, flight-path
angle, flap angle, and the height above ground were computed
at various heights for the nominal values: §, = 20 deg, y, =

20 deg, and 6, = —15 deg. Similar results were obtained
using the steady ground effect approach for §, = 20 deg and
a, = 5 deg.

Both the results of the steady and unsteady models showed
substantial effect for ground on the derivatives, indicating that
they should never be computed from aerodynamic data ob-
tained far from ground when the airfoil is moving in ground

FLAPPED PLATE 129

proximity. Moreover, the unsteady derivatives were different
from the steady ones close to the ground, again indicating
that the steady approximation is not accurate. In particular,
the results showed that the effects of y on the aerodynamic
coefticients and their derivatives are extremely important near
ground. Therefore, derivatives with respect to v, in addition
to those with respect to @ (or «), must be considered. The
steady approach ignores, by its own nature, the effect of y
altogether. The results presented in this article are not in-
tended for direct application. Rather, they demonstrate the
importance of including the unsteady effects in evaluating the
derivatives near the ground.
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